login
A073720
Let b(1) = 1, b(k+1) = b(k) - k*trunc(k/b(k)+1), where trunc(x) = floor(x) if x>= 0, trunc(x) = ceiling(x) otherwise. Sequence a(n) gives the successive absolute values taken by b(k).
1
1, 11, 58, 293, 1468, 7343, 36718, 183593, 917968, 4589843, 22949218, 114746093, 573730468, 2868652343, 14343261718, 71716308593, 358581542968, 1792907714843, 8964538574218, 44822692871093, 224113464355468
OFFSET
1,2
FORMULA
It appears that for n>1 a(n)=( 47*5^(n-2)-3 )/4 and if 2*a(n-1)+1 < k < 2*a(n)+1, then b(k)= -a(n), if k = 2*a(n)+1 b(k)= +a(n).
Empirical g.f.: -x*(3*x^2-5*x-1) / ((x-1)*(5*x-1)). - Colin Barker, Jun 17 2013
CROSSREFS
Sequence in context: A290360 A359719 A356039 * A257364 A141302 A139872
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Aug 30 2002
STATUS
approved