login
A073716
Numbers n such that the number of prime divisors of n (counted with multiplicity) = number of anti-divisors of n.
0
1, 3, 9, 20, 30, 40, 44, 80, 84, 100, 114, 168, 174, 192, 208, 244, 256, 272, 300, 316, 324, 404, 440, 456, 464, 520, 524, 596, 672, 704, 720, 834, 894, 1044, 1064, 1248, 1272, 1324, 1416, 1464, 1604, 1608, 1626, 1632, 1636, 1680, 1686, 1704, 1744, 1756
OFFSET
1,2
COMMENTS
See A066272 for definition of anti-divisor.
EXAMPLE
40 is a term since its prime factors are {2, 2, 2, 5} and its anti-divisors are {3, 9, 16, 27}.
MATHEMATICA
atd[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[1760], PrimeOmega[#] == atd[#] &] (* Jayanta Basu, Jul 08 2013 *)
PROG
(PARI) {for(n=1, 1800, v1=[]; v2=[]; v3=[]; ds=divisors(2*n-1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v1=concat(v1, ds[k]))); ds=divisors(2*n); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v2=concat(v2, ds[k]))); ds=divisors(2*n+1); for(k=2, matsize(ds)[2]-1, if(ds[k]%2>0, v3=concat(v3, ds[k]))); v=vecsort(concat(v1, concat(v2, v3))); if(matsize(v)[2]==bigomega(n), print1(n, ", ")))}
CROSSREFS
Sequence in context: A033315 A200612 A355136 * A174866 A187409 A037048
KEYWORD
nonn
AUTHOR
Jason Earls, Aug 30 2002
EXTENSIONS
Edited and extended by Klaus Brockhaus, Sep 02 2002
STATUS
approved