%I #16 Dec 05 2013 19:55:31
%S 1,3,5,7,9,15,19,25,27,53,43,11,33,49,17,29,95,37,13,31,23,41,47,63,
%T 81,35,51,69,113,45,57,21,67,75,55,107,73,137,131,231,61,103,39,115,
%U 59,145,91,101,205,125,77,227,93,129,127,161,201,167,97,165,141,155,169
%N Rearrangement of odd numbers such that every partial product + 2 is a prime.
%e For 1, 3, 5, 7: 1+2 = 3, 1*3+2 = 5, 1*3*5+2 = 17, 1*3*5*7+2 = 107 are primes. - _Daniel Forgues_, Dec 20 2012
%t f[s_List] := Block[{k = 1, p = Times @@ s}, While[ MemberQ[s, k] || !PrimeQ[k*p + 2], k += 2]; Append[s, k]]; Nest[f, {1}, 62] (* _Robert G. Wilson v_, Dec 24 2012 *)
%Y Cf. A083769.
%Y Cf. A083566.
%K nonn
%O 1,2
%A _Amarnath Murthy_, Aug 11 2002
%E More terms from _Sascha Kurz_, Feb 01 2003