

A073651


Define the composite field of a prime q to be f(q) = (t,s) if p, q, r are three consecutive primes and qp = t and rq = s. This is a sequence of primes q with field (6,2).


1



29, 59, 137, 179, 239, 269, 569, 599, 659, 1019, 1229, 1289, 1607, 1619, 2339, 2549, 2969, 3329, 3539, 3767, 3917, 3929, 4019, 4217, 4259, 4649, 4799, 5009, 5279, 5477, 5849, 5867, 6269, 6359, 6569, 6659, 6869, 7127, 7457, 7487, 7547, 7589, 8087, 8429, 8837, 8969, 9419, 9629
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000


MATHEMATICA

Transpose[Select[Partition[Prime[Range[1200]], 3, 1], Differences[#]=={6, 2}&]][[2]] (* Harvey P. Dale, Jul 23 2011 *)


CROSSREFS

Cf. A073648, A073649, A073650.
Sequence in context: A140340 A140754 A047078 * A042672 A042670 A129813
Adjacent sequences: A073648 A073649 A073650 * A073652 A073653 A073654


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Aug 09 2002


EXTENSIONS

Corrected and extended by Ryan Propper, Jul 10 2005
Corrected and extended by Harvey P. Dale, Jul 23 2011


STATUS

approved



