login
A073644
Largest k such that the harmonic mean of phi(n), phi(n+1), ...., phi(n+x) is an integer for any x with 0<=x<=k.
0
1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 3, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0
OFFSET
1,12
COMMENTS
Largest k such that (x+1)/sum(i=0,x,1/phi(n+i)) is an integer for 0<=x<=k. It seems that a(n)<=5.
CROSSREFS
Sequence in context: A063890 A156439 A087734 * A123343 A054439 A318656
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Sep 01 2002
STATUS
approved