login
Consider Pascal's triangle A007318; a(n) = LCM of terms at +45 degree slope with the horizontal.
1

%I #10 Nov 27 2023 18:29:47

%S 1,1,1,2,3,12,30,60,210,840,1260,2520,13860,27720,180180,360360,

%T 180180,720720,6126120,12252240,116396280,232792560,116396280,

%U 232792560,2677114440,5354228880,13385572200,26771144400,40156716600,80313433200,1164544781400,2329089562800

%N Consider Pascal's triangle A007318; a(n) = LCM of terms at +45 degree slope with the horizontal.

%C A025560 with an a(0) defined in addition. - _R. J. Mathar_, Sep 23 2008

%e The ninth diagonal is 1,7,15,10,1 and the LCM of the terms = 210 hence a(8) = 30.

%p a:= n-> ilcm(seq(binomial(n-i, i), i=0..floor(n/2))):

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Nov 27 2023

%Y Cf. A025560, A073617.

%K nonn

%O 0,4

%A _Amarnath Murthy_, Aug 07 2002

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003