login
A073597
Write Pi = 3.d(1)d(2)d(3)... where d(m) is the m-th digit of the decimal expansion of Pi. Then a(n) = m is the smallest integer such that 1/(n+1) < 0.d(m)d(m+1)d(m+2)... < 1/n.
0
4, 2, 6, 16, 37, 3, 1, 94, 49, 54, 77, 65, 287, 97, 71, 781, 50, 366, 443, 775, 375, 270, 909, 1173, 1912, 195, 357, 85, 724, 2567, 857, 3101, 1044, 32, 159, 557, 164, 3119, 1746, 291, 1333, 1521, 4767, 3018, 545, 523, 4352, 6140, 3830, 703, 167, 245, 1055, 1224
OFFSET
1,1
FORMULA
a(n) = m is solution to n = floor(1/frac(10^(m-1)*Pi)).
CROSSREFS
Cf. A000796.
Sequence in context: A058613 A053227 A083760 * A099507 A331413 A019104
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Aug 29 2002
EXTENSIONS
Terms corrected by and more terms from Jinyuan Wang, Jan 30 2022
STATUS
approved