login
A073533
Let x(1)=1, x(n+1) = (4/3)*x(n) - floor((4/3)*x(n)); then a(n)=x(n)*3^n.
1
1, 4, 16, 64, 13, 52, 208, 832, 3328, 13312, 53248, 212992, 851968, 3407872, 13631488, 11479231, 45916924, 183667696, 734670784, 2938683136, 1294379341, 5177517364, 20710069456, 82840277824, 331361111296, 1325444445184
OFFSET
1,2
COMMENTS
It seems that the sequence x(n) = a(n)/3^n which satisfies 0<x(n)<1 is not equidistributed in (0,1) and perhaps lim n -> infinity sum(k=1,n,x(k))/n = C < 0.38 < 1/2
It appears that a(n) = 13*4^(n-5) for n > 4. - Creighton Dement, Nov 04 2004
This is not true, as a(16) mod 13 = 10. - Reinhard Zumkeller, Jun 05 2015
LINKS
PROG
(Haskell)
import Data.Ratio (numerator, (%))
a073533 n = a073533_list !! (n-1)
a073533_list = f 1 3 1 where
f n p3 x = numerator(y * fromIntegral p3) : f (n + 1) (p3 * 3) y
where y = z - fromIntegral (floor z); z = 4%3 * x
-- Reinhard Zumkeller, Jun 05 2015
CROSSREFS
Cf. A058842.
Sequence in context: A135450 A265032 A162547 * A330689 A061283 A375976
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Aug 27 2002
STATUS
approved