This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073469 G.f.: x/B(x) where B(x) = g.f. for A002487. 1
 1, -1, -1, 2, -2, 0, 4, -4, -2, 6, -4, -2, 10, -8, -6, 14, -10, -4, 20, -16, -8, 24, -18, -6, 34, -28, -14, 42, -34, -8, 56, -48, -18, 66, -52, -14, 86, -72, -30, 102, -80, -22, 126, -104, -40, 144, -110, -34, 178, -144, -62, 206, -158, -48, 248, -200, -82, 282, -208, -74, 338, -264, -122, 386, -282, -104, 452, -348, -156, 504 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS P. Dumas and P. Flajolet, Asymptotique des recurrences mahleriennes: le cas cyclotomique, Journal de Theorie des Nombres de Bordeaux 8 (1996), pp. 1-30. FORMULA Comment from Philippe Flajolet, Sep 06 2008: This sequence grows asymptotically roughly like exp(log(n)^2), but with a complicated pattern of oscillations: see the article by Dumas-Flajolet, page 4, for a complete expansion that is related to A000123 and methods of de Bruijn. MATHEMATICA m = 69; f[x_] = Sum[c[k] x^k, {k, 0, m}]; c[0] = 1; c[1] = -1; c[2] = -1; eq[3] = Thread[ CoefficientList[f[x]^2*f[x^4] + 2*x*f[x]*f[x^2]^2 - f[x^2]^3, x] == 0][[4 ;; ]]; Do[s[k] = Solve[eq[k] // First, c[k]] // First; eq[k + 1] = eq[k] /. s[k] // Rest, {k, 3, m}]; Table[c[k], {k, 0, m}] /. Flatten[Table[s[k], {k, 3, m}]] (* Jean-François Alcover, Jun 30 2011, after g.f. *) CROSSREFS Sequence in context: A262056 A264628 A241320 * A086882 A168587 A100240 Adjacent sequences:  A073466 A073467 A073468 * A073470 A073471 A073472 KEYWORD sign AUTHOR N. J. A. Sloane, Aug 26 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.