login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073469 G.f.: x/B(x) where B(x) = g.f. for A002487. 1
1, -1, -1, 2, -2, 0, 4, -4, -2, 6, -4, -2, 10, -8, -6, 14, -10, -4, 20, -16, -8, 24, -18, -6, 34, -28, -14, 42, -34, -8, 56, -48, -18, 66, -52, -14, 86, -72, -30, 102, -80, -22, 126, -104, -40, 144, -110, -34, 178, -144, -62, 206, -158, -48, 248, -200, -82, 282, -208, -74, 338, -264, -122, 386, -282, -104, 452, -348, -156, 504 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..69.

P. Dumas and P. Flajolet, Asymptotique des recurrences mahleriennes: le cas cyclotomique, Journal de Theorie des Nombres de Bordeaux 8 (1996), pp. 1-30.

FORMULA

Comment from Philippe Flajolet, Sep 06 2008: This sequence grows asymptotically roughly like exp(log(n)^2), but with a complicated pattern of oscillations: see the article by Dumas-Flajolet, page 4, for a complete expansion that is related to A000123 and methods of de Bruijn.

MATHEMATICA

m = 69; f[x_] = Sum[c[k] x^k, {k, 0, m}]; c[0] = 1; c[1] = -1; c[2] = -1;

eq[3] = Thread[ CoefficientList[f[x]^2*f[x^4] + 2*x*f[x]*f[x^2]^2 - f[x^2]^3, x] == 0][[4 ;; ]];

Do[s[k] = Solve[eq[k] // First, c[k]] // First; eq[k + 1] = eq[k] /. s[k] // Rest, {k, 3, m}];

Table[c[k], {k, 0, m}] /. Flatten[Table[s[k], {k, 3, m}]]

(* Jean-Fran├žois Alcover, Jun 30 2011, after g.f. *)

CROSSREFS

Sequence in context: A078029 A078030 A241320 * A086882 A168587 A100240

Adjacent sequences:  A073466 A073467 A073468 * A073470 A073471 A073472

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Aug 26 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 13:05 EST 2014. Contains 250079 sequences.