%I
%S 1,1,2,5,55,9999,3620211522,26596490130011501642,
%T 6462025287494698350477135653962718736877,
%U 532695733923048954868620962844302990205269539900643893905567041090276924142488084
%N e = 1/a(0)+1/a(1)+1/a(2)+1/a(3)+... with each term a(n) being a positive or negative integer chosen so as to minimize the absolute difference between e and the partial sum.
%e a(4)=55 since e(1/1)(1/1)(1/2)(1/5)=0.0182818... is closer to 1/55=0.0181818... than to 1/54=0.0185185...
%Y Cf. A001467, A006525, A014015.
%K sign
%O 0,3
%A _Henry Bottomley_, Jul 30 2002
