login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073404 Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073403. 2
2, 12, 36, 96, 672, 1056, 864, 10752, 40416, 43968, 8064, 156672, 1051776, 2815488, 2396160, 76032, 2121984, 22125312, 105981696, 226492416, 161879040, 718848, 27205632, 404656128, 2995605504 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The row polynomials are q(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..

The k-th convolution of U0(n) := A002605(n), n>= 0, ((2,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073387(n+k,k) = 2*(p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*U0(n))/(k!*(2^2+4*2)^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073403(k,m).

LINKS

Table of n, a(n) for n=0..24.

W. Lang, First 7 rows.

FORMULA

Recursion for row polynomials defined in the comments: see A073405.

EXAMPLE

k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.

1; 12,36; 96,672,1056; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).

CROSSREFS

Cf. A002605, A073387, A073403, A073405.

Sequence in context: A246426 A176583 A011379 * A141208 A181825 A169630

Adjacent sequences:  A073401 A073402 A073403 * A073405 A073406 A073407

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Aug 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)