login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073403 Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073404. 5
1, 12, 36, 120, 888, 1536, 1152, 15168, 62592, 80448, 10944, 222336, 1600704, 4813056, 5068800, 103680, 2992896, 32811264, 169917696, 413351424, 375598080, 981504, 38112768, 587976192, 4592982528 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The row polynomials are p(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..

The k-th convolution of U0(n) := A002605(n), n>= 0, ((2,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073387(n+k,k) = 2*(p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*U0(n))/(k!*12^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073404(k,m).

LINKS

Table of n, a(n) for n=0..24.

W. Lang, First 7 rows.

FORMULA

Recursion for row polynomials defined in the comments: see A073405.

EXAMPLE

k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.

1; 12,36; 120,888,1536; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).

CROSSREFS

Cf. A002605, A073387, A073404.

Sequence in context: A058880 A282097 A055551 * A191817 A270840 A064518

Adjacent sequences:  A073400 A073401 A073402 * A073404 A073405 A073406

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Aug 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 16:08 EDT 2019. Contains 328223 sequences. (Running on oeis4.)