OFFSET
0,2
COMMENTS
The row polynomials are p(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073400(k,m).
LINKS
Wolfdieter Lang, First 7 rows.
FORMULA
Recursion for row polynomials defined in the comments: see A073401.
EXAMPLE
k=2: U2(n)=((9*n+30)*(n+1)*U0(n+1)+(9*n+33)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 9,30; 63,531,1050; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved