login
A073393
Sixth convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
3
1, 14, 126, 896, 5488, 30240, 153888, 735744, 3344544, 14581952, 61378240, 250693632, 997593856, 3880249856, 14791776768, 55385874432, 204082373376, 741186464256, 2656771815936, 9410113241088
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (14,-70,112,196,-728,-168,1920,336,-2912,-1568, 1792,2240,896,128).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k) with b(k) = A002605(k) and c(k) = A073392(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+6, 6)*binomial(n-k, k)*2^(n-k).
a(n) = ((54340 + 59802*n + 24583*n^2 + 4747*n^3 + 433*n^4 + 15*n^5)*(n+1)*U(n+1) + (23420 + 32768*n + 15333*n^2 + 3201*n^3 + 307*n^4 + 11*n^5)*(n+2)*U(n))/(2^7*3^5*5), with U(n) := A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^7.
a(0)=1, a(1)=14, a(2)=126, a(3)=896, a(4)=5488, a(5)=30240, a(6)=153888, a(7)=735744, a(8)=3344544, a(9)=14581952, a(10)=61378240, a(11)=250693632, a(12)=997593856, a(13)=3880249856, a(n) = 14*a(n-1) - 70*a(n-2) + 112*a(n-3) + 196*a(n-4) - 728*a(n-5) - 168*a(n-6) + 1920*a(n-7) + 336*a(n-8) - 2912*a(n-9) - 1568*a(n-10) + 1792*a(n-11) + 2240*a(n-12) + 896*a(n-13) + 128*a(n-14). - Harvey P. Dale, Jan 24 2013
EXAMPLE
x^7 + 14*x^8 + 126*x^9 + 896*x^10 + 5488*x^11 + ... + 204082373376*x^23 + 741186464256*x^24 + 2656771815936*x^25 + 9410113241088*x^26 + ... - Zerinvary Lajos, Jun 03 2009
MATHEMATICA
CoefficientList[Series[1/(1-2x(1+x))^7, {x, 0, 30}], x] (* or *)
LinearRecurrence[{14, -70, 112, 196, -728, -168, 1920, 336, -2912, -1568, 1792, 2240, 896, 128}, {1, 14, 126, 896, 5488, 30240, 153888, 735744, 3344544, 14581952, 61378240, 250693632, 997593856, 3880249856}, 30](* Harvey P. Dale, Jan 24 2013 *)
PROG
(SageMath) taylor( 1/(1-2*x-2*x^2)^7, x, 0, 26).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 05 2022
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^7 )); // G. C. Greubel, Oct 05 2022
CROSSREFS
Seventh (m=6) column of triangle A073387.
Sequence in context: A026870 A090296 A088625 * A020918 A275559 A222477
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved