login
A073386
Ninth convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.
1
1, 20, 230, 1980, 14135, 88264, 497860, 2591160, 12630475, 58295380, 256887774, 1087825180, 4449607565, 17654254880, 68177369040, 257006941664, 948023601910, 3428968838680, 12182953719860
OFFSET
0,2
COMMENTS
For a(n) in terms of U(n+1) and U(n) with U(n) = A000129(n+1) see the row polynomials of triangles A058402 and A058403 and the comment there.
LINKS
Index entries for linear recurrences with constant coefficients, signature (20,-170,780,-1965,2064,1800,-6480,1710,8600,-3772, -8600,1710,6480,1800,-2064,-1965,-780,-170,-20,-1).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A073385(k).
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*binomial(n-k+9, 9)*binomial(n-k, k).
G.f.: 1/(1-(2+x)*x)^10.
a(n) = F'''''''''(n+10, 2)/9!, that is, 1/9! times the 9th derivative of the (n+10)th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
MATHEMATICA
CoefficientList[Series[1/(1-2*x-x^2)^10, {x, 0, 40}], x] (* G. C. Greubel, Oct 03 2022 *)
LinearRecurrence[{20, -170, 780, -1965, 2064, 1800, -6480, 1710, 8600, -3772, -8600, 1710, 6480, 1800, -2064, -1965, -780, -170, -20, -1}, {1, 20, 230, 1980, 14135, 88264, 497860, 2591160, 12630475, 58295380, 256887774, 1087825180, 4449607565, 17654254880, 68177369040, 257006941664, 948023601910, 3428968838680, 12182953719860, 42585118702280}, 20] (* Harvey P. Dale, Nov 20 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^10 )); // G. C. Greubel, Oct 03 2022
(SageMath)
def A073386_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-x^2)^10 ).list()
A073386_list(40) # G. C. Greubel, Oct 03 2022
CROSSREFS
Tenth (m=9) column of triangle A054456.
Sequence in context: A264876 A341394 A023018 * A022648 A004315 A253010
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved