OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,3,-11,-6,12,8).
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, 2) * binomial(n-k, k) * 2^k.
a(n) = ((30+9*n)*(n+1)*U(n+1) + 2*(33+9*n)*(n+2)*U(n))/162 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^3.
E.g.f.: (1/162)*(32*(4 + 9*x + 3*x^2)*exp(2*x) + (34 - 24*x + 3*x^2)*exp(-x)). - G. C. Greubel, Sep 28 2022
MATHEMATICA
CoefficientList[Series[-(-1+x+2x^2)^(-3), {x, 0, 78}], x] (* or *) Table[(-3*(-1)^n*n^2+3*2^(n+2)*n^2-15*(-1)^n*n+9*2^(n+2)*n-16*(-1)^n+2^(n+4))/162, {n, 42}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
PROG
(Magma) [(2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162: n in [0..40]]; // G. C. Greubel, Sep 28 2022
(SageMath)
def A073372(n): return (2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162
[A073372(n) for n in range(40)] # G. C. Greubel, Sep 28 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved