login
A073371
Convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n >= 0, with itself.
16
1, 2, 7, 16, 41, 94, 219, 492, 1101, 2426, 5311, 11528, 24881, 53398, 114083, 242724, 514581, 1087410, 2291335, 4815680, 10097401, 21126862, 44117867, 91963996, 191384541, 397682154, 825190479, 1710033272, 3539371201, 7317351686
OFFSET
0,2
COMMENTS
PSumSIGN transform of A045883(n-1). - Michael Somos, Jul 10 2003
Numbers of the form ((6*m+4)*2^m + (-1)^(m-1)*(3*m+4))/27. - Artur Jasinski, Feb 09 2007
With [0, 0, 0] prepended, this is an "autosequence" of the first kind, whose companion is [0, 0, 2, 3, 12, 25, 66, ...], that is A099429. - Jean-François Alcover, Jul 10 2022
LINKS
Wieb Bosma, Signed bits and fast exponentiation, J. Th. Nombres de Bordeaux, 13 no. 1 (2001), p. 27-41.
OEIS Wiki, Autosequence
FORMULA
a(n) = Sum_{k=0..n} b(k) * b(n-k), where b(k) = A001045(k+1).
a(n) = Sum_{k=0..floor(n/2)} (n-k+1) * binomial(n-k, k) * 2^k.
a(n) = ((n+1)*U(n+1) + 4*(n+2)*U(n))/9 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^2.
G.f.: 1/((1+x)*(1-2*x))^2.
a(n) = ((5+3*n)*2^(n+2) + (7+3*n)*(-1)^n)/27.
a(n) = ((6*n+4)*2^(n) + (-1)^(n-1)*(3*n+4))/27. - Artur Jasinski, Feb 09 2007
E.g.f.: (1/27)*(4*(5+6*x)*exp(2*x) + (7-3*x)*exp(-x)). - G. C. Greubel, Sep 28 2022
MATHEMATICA
Table[((6n+4)*2^n + (-1)^(n-1)(3n+4))/27, {n, 100}] (* Artur Jasinski, Feb 09 2007 *)
PROG
(PARI) a(n) = if(n<-3, 0, ((5+3*n)*2^(n+2)+(7+3*n)*(-1)^n)/27)
(Magma) [((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27: n in [0..40]]; // G. C. Greubel, Sep 28 2022
(SageMath)
def A073371(n): return ((5+3*n)*2^(n+2) + (-1)^n*(7+3*n))/27
[A073371(n) for n in range(40)] # G. C. Greubel, Sep 28 2022
CROSSREFS
Second (m=1) column of triangle A073370.
Sequence in context: A065497 A131727 A320236 * A113224 A178945 A309561
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
STATUS
approved