login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073337 Primes of the form 4*k^2 - 10*k + 7 with k positive. 11
3, 13, 31, 241, 307, 463, 757, 1123, 1723, 3307, 3541, 4831, 5113, 5701, 6007, 8011, 9901, 10303, 11131, 12433, 13807, 14281, 17293, 20023, 20593, 21757, 23563, 24181, 26083, 28057, 30103, 35911, 41413, 43891, 46441, 53593, 60271, 78121, 82657, 86143, 95791, 108571, 123553, 127807, 136531, 145543, 147073, 156421 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes of the form k^2 + k + 1 with k odd and positive. - Peter Munn, Jan 27 2018

Primes of the form A000217(2*k) + A000217(2*k+2). - J. M. Bergot, May 09 2018

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..5000

EXAMPLE

3 is a term because for k=2, 4*k^2 - 10*k + 7 = 3 a prime.

7 is not a term because 7 can only be obtained with k=0 or k=5/2.

MAPLE

select(isprime, [seq(4*n^2-10*n+7 , n=2..300)]); # Muniru A Asiru, Apr 15 2018

MATHEMATICA

Select[Table[4 n^2 - 10 n + 7, {n, 1, 200}], PrimeQ] (* Vincenzo Librandi, Dec 23 2019 *)

PROG

(PARI) select(isprime, vector(300, k, 4*k^2 - 10*k + 7)) \\ Joerg Arndt, Feb 28 2018

(GAP) Filtered(List([2..300], n->4*n^2-10*n+7), IsPrime); # Muniru A Asiru, Apr 15 2018

(MAGMA) [a: n in [1..400] | IsPrime(a) where a is 4*n^2 - 10*n + 7]; // Vincenzo Librandi, Dec 23 2019

CROSSREFS

Cf. A054554, A073338, A168026.

Subset of A002383.

Sequence in context: A154834 A159047 A219971 * A128067 A052493 A279068

Adjacent sequences:  A073334 A073335 A073336 * A073338 A073339 A073340

KEYWORD

easy,nonn

AUTHOR

Zak Seidov, Aug 25 2002

EXTENSIONS

Edited by Dean Hickerson, Aug 28 2002

a(1)=7 inserted and typo in Mathematica code corrected by Vincenzo Librandi, Dec 09 2011

Incorrect term 7 removed by Joerg Arndt, Feb 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 02:57 EDT 2020. Contains 337315 sequences. (Running on oeis4.)