

A073233


Decimal expansion of Pi^Pi.


20



3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendentalsee Marques and Sondow (2012).


LINKS

Harry J. Smith, Table of n, a(n) for n=2,...,20000
D. Marques and J. Sondow, The Schanuel Subset Conjecture implies Gelfond's Power Tower Conjecture, arXiv 2012.


EXAMPLE

36.4621596072079117709908260226...


MATHEMATICA

RealDigits[N[Pi^Pi, 200]] [From Vladimir Joseph Stephan Orlovsky, May 27 2010]


PROG

(PARI) Pi^Pi
(PARI) { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(xd)*10; write("b073233.txt", n, " ", d)); } [From Harry J. Smith, Apr 30 2009]


CROSSREFS

Cf. A073226 (e^e), A049006 (i^i), A000796 (Pi), A073234 (Pi^Pi^Pi), A073236 (Pi analogue of A004002), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A116186 (real part of i^i^i), A194555 (real part of i^e^Pi).
Sequence in context: A023676 A155530 A249032 * A011287 A090963 A112374
Adjacent sequences: A073230 A073231 A073232 * A073234 A073235 A073236


KEYWORD

cons,nonn


AUTHOR

Rick L. Shepherd, Jul 21 2002


EXTENSIONS

Fixed my PARI program, had n Harry J. Smith, May 19 2009


STATUS

approved



