login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073233 Decimal expansion of Pi^Pi. 22
3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

LINKS

Harry J. Smith, Table of n, a(n) for n = 2..20000

D. Marques and J. Sondow, The Schanuel Subset Conjecture implies Gelfond's Power Tower Conjecture, arXiv 2012.

EXAMPLE

36.4621596072079117709908260226...

MATHEMATICA

RealDigits[N[Pi^Pi, 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)

PROG

(PARI) Pi^Pi

(PARI) { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009]

CROSSREFS

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).

Cf. A073226 (e^e).

Cf. A049006 (i^i), A116186 (real part of i^i^i).

Cf. A194555 (real part of i^e^Pi).

Sequence in context: A155530 A249032 A251534 * A011287 A090963 A112374

Adjacent sequences:  A073230 A073231 A073232 * A073234 A073235 A073236

KEYWORD

cons,nonn

AUTHOR

Rick L. Shepherd, Jul 21 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 21:41 EST 2016. Contains 278987 sequences.