|
|
A073216
|
|
The terms of A055235 (sums of two powers of 3) divided by 2.
|
|
2
|
|
|
1, 2, 3, 5, 6, 9, 14, 15, 18, 27, 41, 42, 45, 54, 81, 122, 123, 126, 135, 162, 243, 365, 366, 369, 378, 405, 486, 729, 1094, 1095, 1098, 1107, 1134, 1215, 1458, 2187
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
n such that 3 is the largest power of 3 dividing binomial(3n,n). - Benoit Cloitre, Jan 01 2004
Equals A023745 + 1.
This sequence is A007051 together with its (successive) multiples by (powers of) 3. - R. K. Guy, Oct 08 2011
|
|
LINKS
|
Table of n, a(n) for n=1..36.
C. Armana, Coefficients of Drinfeld modular forms and Hecke operators, Journal of Number Theory 131 (2011), 1435-1460.
|
|
FORMULA
|
(3^n + 3^m) / 2, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.
|
|
EXAMPLE
|
a(4) = 5 = (3^2+3^0) / 2.
|
|
CROSSREFS
|
Cf. A055235, A007051, A023745.
Sequence in context: A087900 A101216 A175095 * A181902 A295631 A278707
Adjacent sequences: A073213 A073214 A073215 * A073217 A073218 A073219
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jeremy Gardiner, Jul 21 2002
|
|
EXTENSIONS
|
Edited by Jeremy Gardiner, Oct 08 2011
|
|
STATUS
|
approved
|
|
|
|