%I #6 Oct 17 2015 08:36:23
%S 1,1,1,1,1,1,3,2,1,1,7,4,1,1,1,22,11,3,1,1,1,66,31,7,2,1,1,1,217,96,
%T 22,4,3,1,1,1,715,305,66,11,7,2,1,1,1,2438,1007,217,30,22,4,2,2,1,1,
%U 8398,3389,715,93,66,11,3,5,1,1,1,29414,11636,2438,292,217,30,6,14,2,2,1,1
%N Array of cycle count sequences for the table A073200.
%C Each row of this table gives the counts of separate orbits/cycles to which the Catalan bijection given in the corresponding row of A073200 partitions each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.
%C Note that for involutions (self-inverse Catalan bijections) this is always (A000108(n)+Affffff(n))/2, where Affffff is the corresponding "fix-count sequence" from the table A073202.
%H A. Karttunen, <a href="http://www.iki.fi/~kartturi/matikka/Nekomorphisms/gatomorf.htm">Gatomorphisms</a> (With the complete source and explanation)
%Y Only the first known occurrence(s) given (marked with ? if not yet proved/unclear): rows 0, 2, 4, etc.: A007595, Row 1: A073191, Rows 6 (& 8): A073431, Row 7: A000108, Rows 12, 14, 20, ...: A057513, Rows 16, 18, ...: A003239, Row 57, ..., 164: A007123, Row 168: A073193, Row 261: A002995, Row 2614: A057507, Row 2618 (?), row 17517: A001683.
%K nonn,tabl
%O 0,7
%A _Antti Karttunen_, Jun 25 2002