login
Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.
3

%I #16 Aug 21 2024 01:55:17

%S 1,1,1,0,2,1,-1,3,3,1,-1,4,8,4,1,0,5,21,15,5,1,1,6,55,56,24,6,1,1,7,

%T 144,209,115,35,7,1,0,8,377,780,551,204,48,8,1,-1,9,987,2911,2640,

%U 1189,329,63,9,1,-1,10,2584,10864,12649,6930,2255,496,80,10,1,0,11,6765,40545,60605,40391,15456,3905,711,99,11,1,1,12

%N Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.

%H Shmuel T. Klein, <a href="http://www.fq.math.ca/Scanned/29-2/klein.pdf">Combinatorial Representation of Generalized Fibonacci Numbers</a>, Fib. Quarterly 29 (2) (1991) 124-131, variable U_n^m. [From _R. J. Mathar_, Feb 19 2010]

%F T(n, k) = A073133(n, k)-2*A073135(n, k-2).

%F T(n, k) = Sum_{j=0..k-1} A049310(k-1, j)*n^j.

%e Rows start:

%e 1, 1, 0, -1, -1, 0, 1, ...;

%e 1, 2, 3, 4, 5, 6, 7, ...;

%e 1, 3, 8, 21, 55, 144, 377, ...;

%e 1, 4, 15, 56, 209, 780, 2911, ...;

%e ...

%o (PARI) T(n,k) = sum(j=0,k-1,A049310(k-1,j)*n^j) \\ _Jason Yuen_, Aug 20 2024

%Y Rows include A010892, A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190. Columns include (with some gaps) A000012, A000027, A005563, A057722.

%Y Cf. A094954.

%K sign,tabl

%O 1,5

%A _Henry Bottomley_, Jul 16 2002