login
A073126
a(n) is the least prime p(s) such that p(s) - p(s-n) is divisible by n, i.e., a(n) = p(s) = kn + p(s-n).
3
3, 7, 29, 17, 37, 23, 41, 61, 29, 53, 61, 59, 59, 67, 67, 71, 79, 79, 83, 167, 89, 157, 331, 163, 103, 107, 113, 193, 347, 191, 367, 191, 379, 211, 421, 211, 433, 409, 347, 229, 419, 223, 431, 239, 499, 457, 479, 257, 487, 263, 419, 277, 431, 997, 521, 293, 521
OFFSET
1,1
LINKS
EXAMPLE
For n=3: a(3) = 29 = p(10) because 29 - p(7) = 29 - 17 = 12 is divisible by 3.
For n=25: a(25) = 103 = p(27) because 103 - p(27-25) = 103 - 3 = 100 is divisible by 25.
MATHEMATICA
Table[s = n + 1; While[! Divisible[Set[p, Prime@ s] - Prime[s - n], n], s++]; p, {n, 57}] (* Michael De Vlieger, Jul 30 2017 *)
PROG
(PARI) a(n) = {s = n+1; while ((prime(s) - prime(s-n)) % n, s++); prime(s); } \\ Michel Marcus, Dec 26 2013
CROSSREFS
Sequence in context: A252787 A018989 A325258 * A154296 A038900 A068485
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 16 2002
STATUS
approved