This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073101 Number of integer solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z. 27

%I

%S 0,0,1,1,2,5,5,6,4,9,7,15,4,14,33,22,4,21,9,30,25,22,19,45,10,17,25,

%T 36,7,72,17,62,27,22,59,69,9,29,67,84,7,77,12,56,87,39,32,142,16,48,

%U 46,53,13,82,92,124,37,30,25,178,11,34,147,118,49,94,15,67,51,176,38,191,7

%N Number of integer solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.

%C In 1948 Erdős and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y + 1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z). All of the solutions can be printed by removing the comment symbols from the Mathematica program. For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247). See A075248 for Sierpiński's conjecture for 5/n.

%C See (A257839, A257840, A257841) for the lexicographically smallest solutions, and A257843 for the differences between these and those with largest z-value. - _M. F. Hasler_, May 16 2015

%H T. D. Noe, <a href="/A073101/b073101.txt">Table of n, a(n) for n=2..1000</a>

%H Christian Elsholtz, <a href="http://dx.doi.org/10.1090/S0002-9947-01-02782-9">Sums Of k Unit Fractions</a>, Trans. Amer. Math. Soc. 353 (2001), 3209-3227.

%H David Eppstein, <a href="http://www.ics.uci.edu/~eppstein/numth/egypt/intro.html">Algorithms for Egyptian Fractions</a>

%H P. Erdős, <a href="https://www.renyi.hu/~p_erdos/1950-02.pdf">Az 1/z_1 + 1/z_2 + ... + 1/z_n = a/b egyenlet egész számú megoldásairól</a>, (On a Diophantine equation), Mat. Lapok, 1:192-210, 1050. Math. Rev. 13:208b.

%H Ron Knott <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fractions/egyptian.html">Egyptian Fractions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>

%e a(5)=2 because there are two solutions: 4/5 = 1/2 + 1/4 + 1/20 and 4/5 = 1/2 + 1/5 + 1/10.

%p A:= proc(n)

%p local x,t, p,q,ds,zs,ys,js, tot,j;

%p tot:= 0;

%p for x from 1+floor(n/4) to ceil(3*n/4)-1 do

%p t:= 4/n - 1/x;

%p p:= numer(t);

%p q:= denom(t);

%p ds:= convert(select(d -> (d < q) and d + q mod p = 0,

%p numtheory:-divisors(q^2)),list);

%p ys:= map(d -> (d+q)/p, ds);

%p zs:= map(d -> (q^2/d+q)/p, ds);

%p js:= select(j -> ys[j] > x,[\$1..nops(ds)]);

%p tot:= tot + nops(js);

%p od;

%p tot;

%p end proc:

%p seq(A(n),n=2..100); # _Robert Israel_, Aug 22 2014

%t (* download Egypt.m from D. Eppstein's site and put it into MyOwn directory underneath Mathematica\AddOns\StandardPackages *) Needs["MyOwn`Egypt`"]; Table[ Length[ EgyptianFraction[4/n, Method -> Lexicographic, MaxTerms -> 3, MinTerms -> 3, Duplicates -> Disallow, OutputFormat -> Plain]], {n, 5, 80}]

%t m = 4; For[lst = {}; n = 2, n <= 100, n++, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; cnt++; (*Print[n, " ", x, " ", y, " ", z]*)]]]; AppendTo[lst, cnt]]; lst

%t f[n_] := Length@ Solve[4/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 72, 2] (* _Robert G. Wilson v_, Jul 17 2013 *)

%o import Data.Ratio ((%), numerator, denominator)

%o a073101 n = length [(x,y) |

%o x <- [n `div` 4 + 1 .. 3 * n `div` 4], let y' = recip \$ 4%n - 1%x,

%o y <- [floor y' + 1 .. floor (2*y') + 1], let z' = recip \$ 4%n - 1%x - 1%y,

%o denominator z' == 1 && numerator z' > y && y > x]

%o -- _Reinhard Zumkeller_, Jan 03 2011

%o (PARI) A073101(n)=sum(c=n\4+1,n*3\4,sum(b=c+1,ceil(2/(t=4/n-1/c))-1,numerator(t-1/b)==1)) \\ _M. F. Hasler_, May 15 2015

%Y Cf. A075245, A075246, A075247, A075248.

%K nonn

%O 1,5

%A _Robert G. Wilson v_, Aug 18 2002

%E Edited by _T. D. Noe_, Sep 10 2002

%E Extended to offset 1 with a(1)=0 by _M. F. Hasler_, May 16 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.