login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073101 Number of integer solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z. 27
0, 0, 1, 1, 2, 5, 5, 6, 4, 9, 7, 15, 4, 14, 33, 22, 4, 21, 9, 30, 25, 22, 19, 45, 10, 17, 25, 36, 7, 72, 17, 62, 27, 22, 59, 69, 9, 29, 67, 84, 7, 77, 12, 56, 87, 39, 32, 142, 16, 48, 46, 53, 13, 82, 92, 124, 37, 30, 25, 178, 11, 34, 147, 118, 49, 94, 15, 67, 51, 176, 38, 191, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

In 1948 Erdős and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y + 1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z). All of the solutions can be printed by removing the comment symbols from the Mathematica program. For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247). See A075248 for Sierpiński's conjecture for 5/n.

See (A257839, A257840, A257841) for the lexicographically smallest solutions, and A257843 for the differences between these and those with largest z-value. - M. F. Hasler, May 16 2015

LINKS

T. D. Noe, Table of n, a(n) for n=2..1000

Christian Elsholtz, Sums Of k Unit Fractions, Trans. Amer. Math. Soc. 353 (2001), 3209-3227.

David Eppstein, Algorithms for Egyptian Fractions

P. Erdős, Az 1/z_1 + 1/z_2 + ... + 1/z_n = a/b egyenlet egész számú megoldásairól, (On a Diophantine equation), Mat. Lapok, 1:192-210, 1050. Math. Rev. 13:208b.

Ron Knott Egyptian Fractions

Eric Weisstein's World of Mathematics, Egyptian Fraction

EXAMPLE

a(5)=2 because there are two solutions: 4/5 = 1/2 + 1/4 + 1/20 and 4/5 = 1/2 + 1/5 + 1/10.

MAPLE

A:= proc(n)

   local x, t, p, q, ds, zs, ys, js, tot, j;

tot:= 0;

for x from 1+floor(n/4) to ceil(3*n/4)-1 do

    t:= 4/n - 1/x;

    p:= numer(t);

    q:= denom(t);

    ds:= convert(select(d -> (d < q) and d + q mod p = 0,

          numtheory:-divisors(q^2)), list);

    ys:= map(d -> (d+q)/p, ds);

    zs:= map(d -> (q^2/d+q)/p, ds);

    js:= select(j -> ys[j] > x, [$1..nops(ds)]);

    tot:= tot + nops(js);

od;

tot;

end proc:

seq(A(n), n=2..100); # Robert Israel, Aug 22 2014

MATHEMATICA

(* download Egypt.m from D. Eppstein's site and put it into MyOwn directory underneath Mathematica\AddOns\StandardPackages *) Needs["MyOwn`Egypt`"]; Table[ Length[ EgyptianFraction[4/n, Method -> Lexicographic, MaxTerms -> 3, MinTerms -> 3, Duplicates -> Disallow, OutputFormat -> Plain]], {n, 5, 80}]

m = 4; For[lst = {}; n = 2, n <= 100, n++, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; cnt++; (*Print[n, " ", x, " ", y, " ", z]*)]]]; AppendTo[lst, cnt]]; lst

f[n_] := Length@ Solve[4/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 72, 2] (* Robert G. Wilson v, Jul 17 2013 *)

PROG

(Haskell)

import Data.Ratio ((%), numerator, denominator)

a073101 n = length [(x, y) |

   x <- [n `div` 4 + 1 .. 3 * n `div` 4],   let y' = recip $ 4%n - 1%x,

   y <- [floor y' + 1 .. floor (2*y') + 1], let z' = recip $ 4%n - 1%x - 1%y,

   denominator z' == 1 && numerator z' > y && y > x]

-- Reinhard Zumkeller, Jan 03 2011

(PARI) A073101(n)=sum(c=n\4+1, n*3\4, sum(b=c+1, ceil(2/(t=4/n-1/c))-1, numerator(t-1/b)==1)) \\ M. F. Hasler, May 15 2015

CROSSREFS

Cf. A075245, A075246, A075247, A075248.

Sequence in context: A094236 A205444 A270705 * A235526 A130851 A130856

Adjacent sequences:  A073098 A073099 A073100 * A073102 A073103 A073104

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Aug 18 2002

EXTENSIONS

Edited by T. D. Noe, Sep 10 2002

Extended to offset 1 with a(1)=0 by M. F. Hasler, May 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 11:15 EST 2016. Contains 278939 sequences.