login
A073078
Least k such that n divides C(2k,k).
3
1, 1, 2, 3, 3, 2, 4, 7, 5, 3, 6, 5, 7, 4, 8, 15, 9, 5, 10, 3, 5, 6, 12, 7, 13, 7, 14, 5, 15, 8, 16, 31, 6, 9, 4, 5, 19, 10, 7, 13, 21, 5, 22, 6, 8, 12, 24, 15, 25, 13, 11, 7, 27, 14, 8, 11, 11, 15, 30, 14, 31, 16, 5, 63, 8, 6, 34, 9, 14, 4, 36, 14, 37, 19, 14, 10, 6, 7, 40, 15, 41, 21
OFFSET
1,3
LINKS
FORMULA
a(2^k)=2^k-1, if n is an odd prime a(n)=(n+1)/2 (but there are also some composites satisfying this property, see A079290).
MAPLE
A073078 := proc(n)
for k from 1 do
if modp(binomial(2*k, k), n) = 0 then
return k;
end if;
end do:
end proc: # R. J. Mathar, Aug 20 2014
MATHEMATICA
lk[n_]:=Module[{k=1}, While[!Divisible[Binomial[2k, k], n], k++]; k]; Array[lk, 90] (* Harvey P. Dale, Oct 09 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, s=1; while(binomial(2*s, s)%n>0, s++); s)
CROSSREFS
Sequence in context: A131469 A309076 A343326 * A360296 A034799 A008985
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Aug 17 2002
STATUS
approved