

A072968


Least k>0 such that the last digit of (n+k)^(n+k) is the same as the last digit of n^n.


0



10, 16, 14, 2, 10, 2, 6, 4, 10, 10, 10, 2, 14, 2, 10, 8, 6, 4, 10, 10, 10, 16, 14, 2, 10, 2, 6, 4, 10, 10, 10, 2, 14, 2, 10, 8, 6, 4, 10, 10, 10, 16, 14, 2, 10, 2, 6, 4, 10, 10, 10, 2, 14, 2, 10, 8, 6, 4, 10, 10, 10, 16, 14, 2, 10, 2, 6, 4, 10, 10, 10, 2, 14, 2, 10, 8, 6, 4, 10, 10, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..81.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).


FORMULA

a(n) is periodic with period (10, 16, 14, 2, 10, 2, 6, 4, 10, 10, 10, 2, 14, 2, 10, 8, 6, 4, 10, 10, 10) of length 20


MATHEMATICA

ld[n_]:=Module[{ldn=Mod[n^n, 10], k=1}, While[Mod[(n+k)^(n+k), 10] != ldn, k++]; k]; Array[ld, 90] (* Harvey P. Dale, Sep 07 2012 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {10, 16, 14, 2, 10, 2, 6, 4, 10, 10, 10, 2, 14, 2, 10, 8, 6, 4, 10, 10}, 81] (* Ray Chandler, Aug 26 2015 *)


PROG

(PARI) a(n)=if(n<0, 0, s=1; while(abs((n+s)^(n+s)%10n^n%10)>0, s++); s)


CROSSREFS

Sequence in context: A232608 A175335 A167788 * A072138 A109891 A104869
Adjacent sequences: A072965 A072966 A072967 * A072969 A072970 A072971


KEYWORD

base,easy,nonn


AUTHOR

Benoit Cloitre, Aug 13 2002


STATUS

approved



