OFFSET
0,3
COMMENTS
What is limit_{n->inf} a(n)^(1/n)? [This limit is equal to 1. - Vaclav Kotesovec, May 21 2018]
LINKS
T. D. Noe, Table of n, a(n) for n=0..100
FORMULA
a(n) = A007294[n(n+1)/2] = coefficient of x^[n(n+1)/2] in the expansion of product_{k=1..inf} 1/(1 - x^(k(k+1)/2)).
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * (n*(n+1))^(1/3) / 2^(4/3)) * Zeta(3/2) / (4*Pi*sqrt(3)*n^3). - Vaclav Kotesovec, May 21 2018
MATHEMATICA
c = CoefficientList[ Series[1/Product[1 - x^(i(i + 1)/2), {i, 1, 50}], {x, 0, 565}], x]; c[[Range[33]*(Range[33] + 1)/2 + 1]] (* Robert G. Wilson v *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 13 2002
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 28 2007
STATUS
approved