

A072930


a(1)=1, a(2)=10, a(n) = floor(a(n1)/Phi)+floor(a(n2)/Phi) where Phi is the golden ratio (1+sqrt(5))/2 (if a(2) < 10 a(k) converges to an integer value).


0



1, 10, 6, 9, 8, 9, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 26, 30, 34, 39, 45, 51, 58, 66, 75, 86, 99, 114, 131, 150, 172, 198, 228, 262, 301, 347, 400, 461, 531, 612, 706, 814, 939, 1083, 1249, 1440, 1660, 1914, 2207, 2546, 2937, 3388, 3908, 4508, 5201, 6000, 6922
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..57.


FORMULA

lim n > infinity a(n)/a(n1) = (Phi1)/C=1.1537213755417679... where C is the positive root of x^4 x^3+2x1 (C=0.5356873867918...)


MATHEMATICA

RecurrenceTable[{a[1]==1, a[2]==10, a[n]==Floor[a[n1]/GoldenRatio]+ Floor[a[n2]/GoldenRatio]}, a, {n, 60}] (* Harvey P. Dale, Jan 27 2012 *)


CROSSREFS

Sequence in context: A102690 A076366 A105155 * A071358 A167873 A033986
Adjacent sequences: A072927 A072928 A072929 * A072931 A072932 A072933


KEYWORD

easy,nonn


AUTHOR

Benoit Cloitre, Aug 13 2002


STATUS

approved



