

A072888


Sum of the coefficients of the Schur function expansion of the square of the Vandermonde determinant in n variables.


2




OFFSET

2,1


COMMENTS

The expansion is combinatorially explosive. The original output and further details are available from my website (see Links).


REFERENCES

T. Scharf, J.Y. Thibon and B. G. Wybourne, Powers of the Vandermonde determinant ... J.Phys.A:Mat.Gen. (27) 4211 (1994)


LINKS

Table of n, a(n) for n=2..10.
B. G. Wybourne, Expansion of the Squares of the Vandermonde Determinant


FORMULA

I conjecture that a(n) = prod_{x=0..floor(n/2)} (3x+1) * prod_{x=0..floor((n1)/2)} (6x+1).


EXAMPLE

a(3) = 14 because V^2(x1,x2,x3) = {42}  3{411}  3{33} + 6{321}  15{222}.


PROG

The expansions were evaluated using the program SCHUR.


CROSSREFS

Sequence in context: A258138 A206947 A203241 * A171012 A094583 A002058
Adjacent sequences: A072885 A072886 A072887 * A072889 A072890 A072891


KEYWORD

hard,sign


AUTHOR

Brian G Wybourne (bgw(AT)phys.uni.torun.pl), Jul 29 2002


STATUS

approved



