login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072878 a(n)=4*a(n-1)*a(n-2)*a(n-3) - a(n-4). 9
1, 1, 1, 1, 3, 11, 131, 17291, 99665321, 903016046275353, 6224717403288400029624460201, 2240882930472585840954332388399544581477407095086361, 50384188378657848181032338163962292285660644698840136656562636145266593550842871302412156442811 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

A subsequence of the generalized Markoff numbers.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..16

A. Baragar, Integral solutions of the Markoff-Hurwitz equations, J. Number Theory 49 (1994) 27-44.

FORMULA

a(1)=a(2)=a(3)=a(4)=1; a(n)=(a(n-1)^2+a(n-3)^2+a(n-2)^2)/a(n-4).

From the recurrence a(n)=4*a(n-1)*a(n-2)*a(n-3) - a(n-4), any four successive terms satisfy the Markoff-Hurwitz equation a(n)^2+a(n-1)^2+a(n-2)^2+a(n-3)^2=4*a(n)*a(n-1)*a(n-2)*a(n-3), cf. A075276. As n tends to infinity, the limit of log(log(a(n)))/n is log x = 0.6093778633... where x=1.839286755... is the real root of the cubic x^3-x^2-x-1=0. - Andrew Hone, Nov 14 2005

MATHEMATICA

RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1, a[n]==4a[n-1]a[n-2]a[n-3]-a[n-4]}, a, {n, 15}] (* Harvey P. Dale, Nov 29 2014 *)

CROSSREFS

Cf. A064098, A075276, A072879, A072880.

Sequence in context: A088075 A088076 A276258 * A112957 A057205 A121897

Adjacent sequences:  A072875 A072876 A072877 * A072879 A072880 A072881

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Jul 28 2002

EXTENSIONS

Entry revised Nov 19 2005, based on comments from Andrew Hone

a(13) from Harvey P. Dale, Nov 29 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 27 10:01 EDT 2016. Contains 276596 sequences.