%I #17 Jan 14 2024 00:14:33
%S 9825688,690587635751,3895157555937180,5870824778815109405,
%T 3785163537257390979782,1331088890498177501120122,
%U 295175742637140311468159615,45387116230097904962420628542,5170069264521752014176860572055,457880645545087313878878724639982
%N A Ramanujan congruence modulo 11^2 related to partition numbers: a(n) = p(121*n-5)/121 where p(k) is the k-th partition number.
%H Andrew Howroyd, <a href="/A072867/b072867.txt">Table of n, a(n) for n = 1..500</a>
%H J. Lehner, <a href="http://www.jstor.org/stable/2371972">Ramanujan's identities involving the partition function for moduli 11^a</a>, Amer. J. Math., (1943).
%F a(n) = A000041(121*n - 5)/121.
%o (PARI) a(n) = {numbpart(121*n-5)/121} \\ _Andrew Howroyd_, Apr 20 2021
%Y Cf. A000041.
%K nonn
%O 1,1
%A _Benoit Cloitre_, Jul 27 2002
%E Terms a(9) and beyond from _Andrew Howroyd_, Apr 20 2021