login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072852 Number of permutations satisfying i-2<=p(i)<=i+5, i=1..n. 6
1, 2, 6, 18, 54, 162, 454, 1267, 3613, 10344, 29572, 84436, 240868, 686884, 1959636, 5592181, 15957717, 45533682, 129922090, 370708166, 1057755082, 3018154342, 8611878218, 24572725639, 70114579881, 200061418144, 570845362600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

R. H. Hardin, Table of n, a(n) for n=1..400

Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135

FORMULA

Recurrence: a(n) = a(n - 1) + 2*a(n - 2) + 4*a(n - 3) + 7*a(n - 4) + 13*a(n - 5) + 22*a(n - 6) + 28*a(n - 7) - 4*a(n - 8) - 6*a(n - 9) - 6*a(n - 10) - 4*a(n - 12) - 10*a(n - 13) - 10*a(n - 14) + a(n - 16) + a(n - 17) + a(n - 20) + a(n - 21). G.f.: - (x^14 + x^12 + x^10 + x^8 - 6*x^7 - x^6 - 4*x^5 - 3*x^4 - 2*x^3 - x^2 + 1)/(x^21 + x^20 + x^17 + x^16 - 10*x^14 - 10*x^13 - 4*x^12 - 6*x^10 - 6*x^9 - 4*x^8 + 28*x^7 + 22*x^6 + 13*x^5 + 7*x^4 + 4*x^3 + 2*x^2 + x - 1);

CROSSREFS

Cf. A002524..A002529, A072827, A072850..A072856, A079955..A080014.

Sequence in context: A254941 A182899 A160175 * A072853 A179344 A179349

Adjacent sequences: A072849 A072850 A072851 * A072853 A072854 A072855

KEYWORD

nonn

AUTHOR

Vladimir Baltic, Jul 25 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 01:29 EST 2022. Contains 358711 sequences. (Running on oeis4.)