login
A072818
Possibly the only integers of the form sqrt(m^2*(m^2-1)*2/3) [only checked for the first 5 terms].
2
0, 20, 1960, 192060, 18819920, 1844160100, 180708869880, 17707625088140, 1735166549767840, 170028614252160180, 16661069030161929800, 1632614736341616960220, 159979583092448300171760
OFFSET
0,2
COMMENTS
These are the standard deviations of time for a random walk starting at 0 to reach one of the boundaries at +A001079(n) or -A001079(n) for the first time.
FORMULA
a(n) = 98*a(n-1)-a(n-2) [starting with a(0)=0 and a(1)=20] =sqrt(A072819(A001079(n))).
G.f.: 20x/(1-98x+x^2). [Philippe Deléham, Nov 18 2008]
EXAMPLE
0 and 20 are at the start of the sequence since m^2*(m^2-1)*2/3 (A072819) starts 0, 0, 8, 48, 160, 400, 840, 1568, ... and the only squares among these are 0 and 400 with square roots of 0 and 20.
CROSSREFS
Sequence in context: A246619 A222973 A267575 * A123479 A071152 A195622
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 14 2002
STATUS
approved