login
A072810
a(0)=1, a(n) = a(n-1) - sum_{k=2..n} mu(k)a(n-k), where mu(k) is the Moebius function of k.
0
1, 1, 2, 4, 7, 14, 25, 48, 90, 168, 316, 592, 1112, 2086, 3913, 7342, 13775, 25845, 48490, 90978, 170694, 320257, 600867, 1127352, 2115147, 3968453, 7445640, 13969562, 26209794, 49175002, 92262491, 173103549, 324778120, 609351037
OFFSET
0,3
COMMENTS
The radius of convergence of the series A(x) is r=0.5329901818866726, where r is a solution to (1-r) + sum_{n=2..inf} mu(n)r^n = 0. Related limits are limit_{n->inf} a(n) r^n = 0.5842536738793409 and limit_{n->inf} a(n+1)/a(n) = 1.8762071685077034.
FORMULA
G.f.: 1/A(x) = (1-x) + sum_{n=2..inf} mu(n)x^n.
EXAMPLE
a(6)=a(5)-mu(2)a(4)-mu(3)a(3)-mu(4)a(2)-mu(5)a(1)-mu(6)a(0)=14+7+4+0+1-1=25.
CROSSREFS
Sequence in context: A054169 A287185 A065491 * A167606 A065455 A220842
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Aug 09 2002
EXTENSIONS
Corrected by Franklin T. Adams-Watters, Oct 25 2006
STATUS
approved