%I #16 Dec 24 2015 11:44:03
%S 6,24,27,33,66,84,87,93,126,144,147,153,186,204,207,213,246,264,267,
%T 273,306,324,327,333,366,384,387,393,426,444,447,453,486,504,507,513,
%U 546,564,567,573,606,624,627,633,666,684,687,693,726,744,747,753,786
%N Last digit of F(n) is 8 where F(n) is the n-th Fibonacci number.
%C Sequence contains numbers of form (6+60k), (24+60k), (27+60k), (33+60k), with k>=0.
%H Colin Barker, <a href="/A072710/b072710.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F G.f.: x*(27*x^4+6*x^3+3*x^2+18*x+6) / (x^5-x^4-x+1). - _Colin Barker_, Jun 16 2013
%F a(n) = (-60 - 6*(-1)^n - (21-9*i)*(-i)^n - (21+9*i)*i^n + 60*n) / 4 where i=sqrt(-1). - _Colin Barker_, Oct 16 2015
%o (PARI) a(n) = (-60 - 6*(-1)^n - (21-9*I)*(-I)^n - (21+9*I)*I^n + 60*n) / 4 \\ _Colin Barker_, Oct 16 2015
%o (PARI) Vec(x*(27*x^4+6*x^3+3*x^2+18*x+6)/(x^5-x^4-x+1) + O(x^100)) \\ _Colin Barker_, Oct 16 2015
%Y Cf. A000045, A003893.
%K nonn,base,easy
%O 1,1
%A _Benoit Cloitre_, Aug 07 2002