The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072708 Last digit of F(n) is 6 where F(n) is the n-th Fibonacci number. 2
 21, 39, 42, 48, 81, 99, 102, 108, 141, 159, 162, 168, 201, 219, 222, 228, 261, 279, 282, 288, 321, 339, 342, 348, 381, 399, 402, 408, 441, 459, 462, 468, 501, 519, 522, 528, 561, 579, 582, 588, 621, 639, 642, 648, 681, 699, 702, 708, 741, 759, 762, 768, 801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Sequence contains numbers of form (21+60k), (39+60k), (42+60k), (48+60k), with k>=0. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA G.f.: x*(12*x^4+6*x^3+3*x^2+18*x+21) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013 a(n) = (-3/4+(3*i)/4)*((1+i)*(-1)^n + (5+2*i)*(-i)^n + (2+5*i)*i^n - (10+10*i)*n) where i=sqrt(-1). - Colin Barker, Oct 16 2015 MATHEMATICA LinearRecurrence[{1, 0, 0, 1, -1}, {21, 39, 42, 48, 81}, 60] (* Harvey P. Dale, Aug 28 2017 *) PROG (PARI) a(n) = (-3/4+(3*I)/4)*((1+I)*(-1)^n + (5+2*I)*(-I)^n + (2+5*I)*I^n - (10+10*I)*n) \\ Colin Barker, Oct 16 2015 (PARI) Vec(x*(12*x^4+6*x^3+3*x^2+18*x+21)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015 CROSSREFS Cf. A000045, A003893. Sequence in context: A139768 A307278 A176071 * A338330 A102478 A221048 Adjacent sequences:  A072705 A072706 A072707 * A072709 A072710 A072711 KEYWORD nonn,base,easy AUTHOR Benoit Cloitre, Aug 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:58 EDT 2021. Contains 347536 sequences. (Running on oeis4.)