login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072708 Last digit of F(n) is 6 where F(n) is the n-th Fibonacci number. 2
21, 39, 42, 48, 81, 99, 102, 108, 141, 159, 162, 168, 201, 219, 222, 228, 261, 279, 282, 288, 321, 339, 342, 348, 381, 399, 402, 408, 441, 459, 462, 468, 501, 519, 522, 528, 561, 579, 582, 588, 621, 639, 642, 648, 681, 699, 702, 708, 741, 759, 762, 768, 801 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence contains numbers of form (21+60k), (39+60k), (42+60k), (48+60k), with k>=0.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

G.f.: x*(12*x^4+6*x^3+3*x^2+18*x+21) / (x^5-x^4-x+1). - Colin Barker, Jun 16 2013

a(n) = (-3/4+(3*i)/4)*((1+i)*(-1)^n + (5+2*i)*(-i)^n + (2+5*i)*i^n - (10+10*i)*n) where i=sqrt(-1). - Colin Barker, Oct 16 2015

MATHEMATICA

LinearRecurrence[{1, 0, 0, 1, -1}, {21, 39, 42, 48, 81}, 60] (* Harvey P. Dale, Aug 28 2017 *)

PROG

(PARI) a(n) = (-3/4+(3*I)/4)*((1+I)*(-1)^n + (5+2*I)*(-I)^n + (2+5*I)*I^n - (10+10*I)*n) \\ Colin Barker, Oct 16 2015

(PARI) Vec(x*(12*x^4+6*x^3+3*x^2+18*x+21)/(x^5-x^4-x+1) + O(x^100)) \\ Colin Barker, Oct 16 2015

CROSSREFS

Cf. A000045, A003893.

Sequence in context: A061906 A139768 A176071 * A102478 A221048 A182297

Adjacent sequences:  A072705 A072706 A072707 * A072709 A072710 A072711

KEYWORD

nonn,base,easy

AUTHOR

Benoit Cloitre, Aug 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 23 11:15 EDT 2017. Contains 293784 sequences.