%I #5 Aug 01 2019 13:37:55
%S 0,1,2,2,3,3,3,4,4,3,4,3,4,5,5,5,5,4,4,5,5,4,5,5,6,6,6,6,6,6,7,6,7,4,
%T 5,4,5,6,6,6,6,4,5,5,6,6,6,7,7,7,7,7,7,7,8,7,8,7,7,8,8,7,8,8,9,5,4,6,
%U 5,5,4,6,5,7,6,7,6,7,6,7,6,5,6,6,7,6,6,7,7,7,8,7,8,8,8,8,8,8,7,8,7,8,7,8,7
%N Size of the parenthesizations obtained with the global ranking/unranking scheme A072634-A072637.
%H Sohrab Towfighi, <a href="https://arxiv.org/abs/1906.07848">Symbolic regression by random search</a>, arXiv:1906.07848 [cs.NE], 2019.
%Y Cf. A072635 & A072637. A072644(n) = A029837(A014486(A072635(n))+1)/2 or = A029837(A014486(A072637(n))+1)/2 [A029837(n+1) gives the binary width of n].
%Y Each value v occurs A000108(v) times. The maximum position for value v to occur is A072639(v). Permutations: A071673, A072643, A072645, A072660.
%K nonn
%O 0,3
%A _Antti Karttunen_, Jun 02 2002