login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072551 Decimal expansion of sqrt(e^(1/e)) = 1.20194336847031... 0
1, 2, 0, 1, 9, 4, 3, 3, 6, 8, 4, 7, 0, 3, 1, 4, 4, 6, 7, 1, 9, 4, 2, 4, 1, 1, 3, 9, 3, 8, 1, 2, 9, 7, 0, 8, 0, 4, 4, 0, 1, 8, 7, 1, 5, 3, 9, 3, 5, 1, 6, 9, 0, 9, 5, 6, 3, 0, 9, 8, 9, 0, 1, 3, 8, 3, 1, 5, 7, 8, 4, 5, 1, 1, 2, 1, 6, 8, 1, 0, 7, 1, 8, 4, 9, 4, 4, 4, 1, 8, 1, 4, 3, 0, 2, 1, 6, 3, 8, 2, 4, 2, 1, 9, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This constant is related to the convergence properties of the following simple algorithm: w(n+2) = A^( w(n+1) + w(n) ) where A is a positive real. Take any w(1), w(2) reals>0, then w(n) converges if and only if, 0 < A < sqrt(e^(1/e)). For example if A=1/2 w(n) converges to 1/2, if A=1/3, w(n) converges to 0.408004405...(If w(n) converges the limit L is always independent of initial values w(1),w(2) and L is < e).

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.

LINKS

Table of n, a(n) for n=1..105.

MATHEMATICA

RealDigits[E^(E^-1/2), 10, 110] [[1]]

CROSSREFS

See also A073229 for e^(1/e).

Sequence in context: A327090 A021836 A255306 * A256117 A219034 A256116

Adjacent sequences:  A072548 A072549 A072550 * A072552 A072553 A072554

KEYWORD

cons,nonn

AUTHOR

Benoit Cloitre, Aug 05 2002

EXTENSIONS

Edited by Robert G. Wilson v, Aug 08 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 14:58 EST 2021. Contains 341762 sequences. (Running on oeis4.)