|
|
A072548
|
|
a(n) = sigma(n) mod PrimePi(n).
|
|
3
|
|
|
0, 0, 1, 0, 0, 0, 3, 1, 2, 2, 3, 2, 0, 0, 1, 4, 4, 4, 2, 0, 4, 6, 6, 4, 6, 4, 2, 0, 2, 10, 8, 4, 10, 4, 3, 2, 0, 8, 6, 3, 5, 2, 0, 8, 2, 3, 4, 12, 3, 12, 8, 6, 8, 8, 8, 0, 10, 9, 15, 8, 6, 14, 1, 12, 0, 11, 12, 1, 11, 12, 15, 11, 9, 19, 14, 12, 0, 14, 10, 11, 16, 15, 17, 16, 17, 5, 19, 18, 18
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,7
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 2..10000
|
|
FORMULA
|
a(n) = A000203(n) mod A000720(n).
|
|
MAPLE
|
with(numtheory): seq(modp(sigma(n), pi(n)), n=2..100); # Muniru A Asiru, Dec 10 2018
|
|
MATHEMATICA
|
Table[Mod[DivisorSigma[1, w], PrimePi[w]], {w, 1, 128}]
|
|
PROG
|
(PARI) a(n) = sigma(n) % primepi(n); \\ Michel Marcus, Dec 10 2018
(MAGMA) [SumOfDivisors(n) mod (#PrimesUpTo(n)): n in [2..100]]; // Vincenzo Librandi, Dec 10 2018
|
|
CROSSREFS
|
Cf. A000203, A000720, A073321, A073322, A073323, A073324.
Sequence in context: A328848 A108121 A161916 * A079399 A092155 A288725
Adjacent sequences: A072545 A072546 A072547 * A072549 A072550 A072551
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Aug 05 2002
|
|
STATUS
|
approved
|
|
|
|