login
A072523
Sum of remainders when n-th Fibonacci number is divided by all smaller Fibonacci numbers > 1.
2
0, 0, 0, 1, 3, 5, 10, 15, 28, 46, 79, 120, 207, 330, 540, 867, 1428, 2293, 3737, 6009, 9778, 15808, 25630, 41370, 67092, 108483, 175649, 284022, 459938, 743945, 1204113, 1947712, 3152386, 5100237, 8253262, 13352465, 21607324, 34959920
OFFSET
1,5
LINKS
FORMULA
Conjecture: lim n->inf F(n)/a(n) = sqrt(5)/2 where F(n) is the n-th Fibonacci number and therefore lim n->inf a(n)/a(n-1) = Phi (i.e. (sqrt(5)+1)/2 or lim n->inf F(n)/F(n-1)) - _Gerald McGarvey_, Jul 14 2004
EXAMPLE
The eighth Fibonacci number is 21; division by 2, 3, 5, 8,13 gives the remainders 1, 0, 1, 5, 8, so a(8) = 1 + 0 + 1+ 5 + 8 = 15.
MATHEMATICA
Table[Total[Mod[Fibonacci[n], Fibonacci[Range[n-1]]]], {n, 40}] (* _Harvey P. Dale_, Mar 18 2015 *)
PROG
(PARI) for(n=1, 38, s=0; for(j=3, n-1, s=s+fibonacci(n)%fibonacci(j)); print1(s, ", "))
CROSSREFS
Sequence in context: A326597 A008337 A077285 * A054473 A265508 A327042
KEYWORD
nonn
AUTHOR
_Amarnath Murthy_, Jul 31 2002
EXTENSIONS
Edited and extended by _Klaus Brockhaus_, Aug 02 2002
STATUS
approved