login
A072498
n is not equal to the product of the k smallest divisors of n for any k.
3
4, 9, 12, 16, 18, 20, 25, 28, 32, 36, 42, 44, 45, 48, 49, 50, 52, 54, 60, 63, 66, 68, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 108, 110, 112, 114, 116, 117, 121, 124, 126, 128, 130, 132, 136, 138, 140, 147, 148, 150, 152, 153, 156, 160, 162
OFFSET
1,1
COMMENTS
Positive integers not included in A072510. Sequence includes all squares of primes.
LINKS
EXAMPLE
Divisors of 384 are 1,2,3,4,6,8,12,16,24,32,48,64,96,128,192,384. Partial products are: 1=1, 1*2=2, 1*2*3=6, 1*2*3*4=24, 1*2*3*4*6=144, 1*2*3*4*6*8=1152 and so 384 (144<384<1152) is not in A072510.
MAPLE
filter:= proc(n) local F, d, p;
F:= sort(convert(numtheory:-divisors(n), list));
p:= 1:
for d in F do
p:= p*d;
if p > n then return true
elif p = n then return false
fi
od;
end proc:
select(filter, [$1..1000]); # Robert Israel, Sep 28 2016
MATHEMATICA
Select[Range[200], !MemberQ[FoldList[Times, 1, Divisors[#]], #]&] (* Harvey P. Dale, Jun 18 2013 *)
CROSSREFS
Cf. A072510.
Sequence in context: A066423 A355571 A376164 * A162643 A072587 A240112
KEYWORD
nonn
AUTHOR
Vladimir Baltic, Aug 03 2002
EXTENSIONS
Edited by Robert Israel, Sep 28 2016
STATUS
approved