login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072491 Define f(1) = 0. For n>=2, let f(n) = n - p where p is the largest prime <= n. a(n) = number of iterations of f to reach 0, starting from n. 4
0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 3, 2, 3, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

a(p)=1, a(p+1)=2 and a(p+4)=3 if p is an odd prime but p+2 and p+4 are composite.

Number of noncomposites (A008578) needed to sum to n using the greedy algorithm. - Antti Karttunen, Aug 09 2015

REFERENCES

S. S. Pillai, "An arithmetical function concerning primes", Annamalai University Journal (1930), pp. 159-167.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10007

FORMULA

On Cramér's conjecture, a(n) = O(log* n). - Charles R Greathouse IV, Feb 04 2013

EXAMPLE

a(27)=3 as f(27)=27-23=4, f(4)=4-3=1 and f(1)=0.

MATHEMATICA

f[1]=0; f[n_] := n-Prime[PrimePi[n]]; a[n_] := Module[{k, x}, For[k=0; x=n, x>0, k++; x=f[x], Null]; k]

PROG

(PARI) a(n)=if(n<4, n>0, 1+a(n-precprime(n))) \\ Charles R Greathouse IV, Feb 04 2013

CROSSREFS

Cf. A008578, A072492. A066352(n) is the smallest k such that a(k)=n.

Not the same as A051034: a(122) = 3, but A051034(122) = 2.

Sequence in context: A071854 A183025 A072410 * A051034 A082477 A036430

Adjacent sequences:  A072488 A072489 A072490 * A072492 A072493 A072494

KEYWORD

nonn,easy

AUTHOR

Amarnath Murthy, Jul 14 2002

EXTENSIONS

Edited by Dean Hickerson, Nov 26 2002

a(0) = 0 prepended by Antti Karttunen, Aug 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 06:42 EST 2016. Contains 278698 sequences.