%I #18 Sep 19 2019 08:51:59
%S 0,1,0,0,0,1,1,2,0,0,1,4,1,5,4,1,0,7,2,8,3,3,7,10,2,3,9,0,5,13,9,14,0,
%T 6,12,4,3,17,14,8,4,19,8,20,9,8,19,22,1,8,6,10,12,25,6,11,11,15,25,28,
%U 14,29,28,10,0,10,15,32,19,22,17,34,11,35,32,15,22,17,21,38,3,0,36,40,19,21
%N Shadow transform of Catalan numbers A000108.
%H Alois P. Heinz, <a href="/A072458/b072458.txt">Table of n, a(n) for n = 0..4000</a>
%H Lorenz Halbeisen and Norbert Hungerbuehler, <a href="https://www.semanticscholar.org/paper/Number-theoretic-aspects-of-a-combinatorial-Halbeisen-Hungerb%C3%BChler/5743ff2f9c14d22d1a9e570d6951a7c9ef79a612">Number theoretic aspects of a combinatorial function</a>, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%p a:= n-> add(`if`(modp(binomial(2*j,j)/(j+1), n)=0, 1, 0), j=0..n-1):
%p seq(a(n), n=0..120); # _Alois P. Heinz_, Sep 16 2019
%Y Cf. A072480.
%K nonn,look
%O 0,8
%A _N. J. A. Sloane_, Aug 02 2002, corrected Aug 21 2002