

A072400


(Factors of 4 removed from n) modulo 8.


5



1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 1, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 2, 1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 3, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 1, 1, 2, 3, 1, 5, 6, 7, 2, 1, 2, 3, 3, 5, 6, 7, 5, 1, 2, 3, 5, 5, 6, 7, 6, 1, 2, 3, 7, 5, 6, 7, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) <> 7 iff n equals the sum of 3 integer squares.
a(A004215(k)) = 7 for k>0;


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Square Numbers.


FORMULA

a(n) = A065883(n) mod 8.
A072401(n) = 1  A057427(7  a(n)).


EXAMPLE

From Michael De Vlieger, May 08 2017: (Start)
a(4) = 1 since 4 = 1 * 4^1 and 4 / 4^1 = 1; 1 = 1 (mod 8).
a(5) = 5 since it is not a multiple of 4; 5 = 5 (mod 8).
a(12) = 3 since 12 = 3 * 4^1 and 12 / 4^1 = 3; 3 = 3 (mod 8).
a(44) = 3 since 44 = 11 * 4^1 and 44 / 4^1 = 11; 3 = 11 (mod 8).
a(64) = 1 since 64 = 1 * 4^3 and 64 / 4^3 = 1; 1 = 1 (mod 8).
(End)


MATHEMATICA

Array[Mod[If[Mod[#, 4] == 0, #/4^IntegerExponent[#, 4], #], 8] &, 96] (* Michael De Vlieger, May 08 2017 *)


CROSSREFS

Cf. A000378, A057427, A065883, A072401, A286366.
Sequence in context: A160400 A325978 A326049 * A007913 A083346 A319652
Adjacent sequences: A072397 A072398 A072399 * A072401 A072402 A072403


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Jun 16 2002


EXTENSIONS

Offset corrected (from 0 to 1) by Antti Karttunen, May 08 2017


STATUS

approved



