%I #24 Feb 03 2023 03:16:57
%S 3,8,6,20,18,12,30,54,24,36,138,48,84,72,108,96,210,120,276,168,216,
%T 252,288,240,336,570,384,420,360,576,480,540,504,660,600,672,990,720,
%U 792,840,1152,1140
%N Index of smallest Fibonacci number with n prime factors when counted with multiplicity.
%C 1452 < a(43) <= 1596, a(44) = 1296, a(45) = 1368, a(46) = 1080, a(47) = 1200, a(48) <= 1728. - _Daniel Suteu_, Jan 19 2023
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha108.htm">Fibonacci numbers (n = 1 to 100)</a>.
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha109.htm">Fibonacci numbers (n = 101 to 200)</a>.
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha110.htm">Fibonacci numbers (n = 201 to 300)</a>.
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha111.htm">Fibonacci numbers (n = 301 to 400)</a>.
%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha112.htm">Fibonacci numbers (n = 401 to 480)</a>.
%e a(3) = 6 since the 6th Fibonacci number 8 has 3 prime factors.
%o (PARI) a(n) = my(k=1); while (bigomega(fibonacci(k)) != n, k++); k; \\ _Michel Marcus_, Aug 26 2020
%Y Cf. A000045, A038575, A072397.
%Y Row n=1 of A303215.
%K nonn,more
%O 1,1
%A _Shyam Sunder Gupta_, Jul 21 2002
%E a(17)-a(24) from _Alois P. Heinz_, Apr 10 2018
%E a(25)-a(42) from _Amiram Eldar_, Aug 26 2020