login
A072391
D2(n,n) = Sum_{1<=k<=n} (d_n(k^2)), where d_a(k^2)=card{d: d|k and 1<=d<=a} for real a.
0
1, 3, 5, 9, 11, 16, 18, 23, 28, 33, 35, 44, 46, 51, 56, 64, 66, 76, 78, 87, 92, 97, 99, 111, 118, 123, 129, 138, 140, 154, 156, 165, 170, 175, 180, 198, 200, 205, 210, 222, 224, 238, 240, 249, 259, 264, 266, 283, 292, 304, 309, 318, 320, 333, 338, 350, 355, 360
OFFSET
1,2
LINKS
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, vol. 101, (2002), pp. 105-114.
FORMULA
a(n)=Sum_{k<=n} (floor(n/A019554(k))) Asymptotic expression: a(n)=(n*log(n)^2/(4*zeta(2)))+(n*log(n)/zeta(2))*((3*gamma/2)-(zeta'(2)/zeta(2))), gamma = A001620.
Asymptotic expression (includes error term): a(n)=(n*log(n)^2/(4*zeta(2)))+(n*log(n)/zeta(2))*((3*gamma/2)-(zeta'(2)/zeta(2)))+O(n), gamma = A001620.
CROSSREFS
Cf. A019554.
Sequence in context: A018486 A261194 A024414 * A310038 A372051 A036696
KEYWORD
nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002
STATUS
approved