%I #17 May 19 2024 09:42:27
%S 1,4,75,384,1805,8100,35287,150528,632025,2620860,10759331,43804800,
%T 177105253,711809364,2846259375,11330543616,44929049777,177540878700,
%U 699402223099,2747583822720,10766828545725,42095796462852,164244726238343,639620518118400,2486558615814025
%N Complexity of doubled cycle (regarding case n = 2 as a graph).
%H Stefano Spezia, <a href="/A072373/b072373.txt">Table of n, a(n) for n = 1..1700</a>
%H Germain Kreweras, <a href="https://doi.org/10.1016/0095-8956(78)90021-7">Complexité et circuits Eulériens dans les sommes tensorielles de graphes</a>, J. Combin. Theory, B 24 (1978), 202-212.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-35,52,-35,10,-1).
%F G.f.: -8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
%F a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>8.
%o (PARI) /* prism (or doubled cycle) graph with n vertices */ prism(n)=if(n%2,[;],matrix(n,n,i,j,i!=j && ((abs(i-j)==1 && (i+j)!=n+1) || (abs(i-j)==n/2-1 && (i+j)%n==n/2+1) || abs(i-j)==n/2)))
%o (PARI) /* treenumber (or complexity) of a graph */ treenumber(m)=local(n); n=matdim(m); if(n,matdet(adj2laplace(m)+matone(n))/n^2)
%o (PARI) /* convert adjacency matrix to laplacian matrix */ adj2laplace(m)=local(l,n); n=matdim(m); matdiagonal(m*vectorv(n,i,1))-m
%o (PARI) /* matrix J of all ones */ matone(n)=matrix(n,n,i,j,1) /* dimension of a square matrix */ matdim(m)=matsize(m)[1]
%o (PARI) a(n)=treenumber(prism(2*n))
%o (PARI) a(n)=if(n<0,0,polcoeff(-8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))
%Y Apart from a(2) coincides with A006235.
%K nonn,easy
%O 1,2
%A _Michael Somos_, Jul 19 2002