login
A072370
Numbers n such that tau(n) = log(n) + 2 * EulerGamma - 1 (rounded off), where tau(n) denotes the number of divisors of n and EulerGamma denotes the Euler-Mascheroni constant (0.5 is rounded to 0).
1
5, 7, 25, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 81, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452, 475, 477, 507, 508, 524, 531, 539, 548
OFFSET
1,1
COMMENTS
Dirichlet proved that the average value of tau(n) is approximately log(n) + 2 * EulerGamma - 1 (see the reference by Tattersall).
REFERENCES
Tattersall, J. "Elementary Number Theory in Nine Chapters". Cambridge University Press, 1999.
LINKS
MATHEMATICA
Select[Range[10^3], DivisorSigma[0, # ] == Round[Log[ # ] + 2*EulerGamma - 1] &]
CROSSREFS
Cf. A000005, A001620 (EulerGamma).
Sequence in context: A354202 A037374 A056717 * A057490 A057253 A003595
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Jul 19 2002
STATUS
approved