login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072292 Number of proper powers b^d <= n (b > 1, d > 1). 2
0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Base b = 1 is excluded since 1 would be 1^d for any degree d (degree of power not well defined).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Perfect Power.

MATHEMATICA

a[n_] := (pp = Reap[ Do[ If[b^d <= n, Sow[b^d]], {b, 2, Sqrt[n]}, {d, 2, Log[2, n]}]]; If[pp == {Null, {}}, 0, Length[ Union[ pp[[2, 1]]]]]); Table[a[n], {n, 1, 90}](* Jean-Fran├žois Alcover, May 16 2012 *)

PROG

(PARI) A072292(n)=n=floor(n)+.5; -sum(k=2, log(n)\log(2), floor(n^(1/k)-1)*moebius(k))

\\ Charles R Greathouse IV, Sep 07 2010

(Haskell)

a072292 n = a072292_list !! (n-1)

a072292_list = scanl (+) 0 $ tail a075802_list

-- Reinhard Zumkeller, May 26 2012

CROSSREFS

a(i)=A069637(i) for i<36=6^2. Cf. A001597.

Cf. A075802 (first differences).

Sequence in context: A025791 A237115 A069637 * A243282 A093390 A025789

Adjacent sequences:  A072289 A072290 A072291 * A072293 A072294 A072295

KEYWORD

nonn,easy,nice

AUTHOR

Reinhard Zumkeller, Jul 12 2002

EXTENSIONS

Edited by Daniel Forgues, Mar 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 06:06 EST 2018. Contains 317453 sequences. (Running on oeis4.)